Ýëåêòðîíèêà
ÃËÀÂÍÀß
Ïîïóëÿðíûå ñòàòüè
» Elektor Electronics ¹5 (September-October 2020)
» CQ Amateur Radio ¹10 (October 2020)
» The MagPi - Issue 98 (October 2020)
» Ýëåêòðîííûå êîìïîíåíòû è ñèñòåìû ¹3 (Èþëü-Ñåíòÿáðü 2020 ...
» Arduino with MATLAB in the thermography: From the senso ...
» Ñîâðåìåííàÿ ýëåêòðîíèêà ¹8 2020

Îáëàêî òåãîâ
Arduino, Circuit Cellar, Elektor, Everyday Practical Electronics, Nuts and Volts, Raspberry Pi, àíòåííà, àóäèî, âèäåî, Æóðíàë, Èçìåðåíèÿ, Ìèêðîêîíòðîëëåðû, Ìèêðîñõåìû, ìèêðîýëåêòðîíèêà, Ïðîãðàììèðîâàíèå, Ðàä³îàìàòîð, Ðàäèî, Ðàäèî (æóð.), Ðàäèîàìàòîð, Ðàäèîêîíñòðóêòîð, Ðàäèîëþáèòåëü, ðàäèîëþáèòåëþ, Ðàäèîìèð, ðàäèîñâÿçü, ðàäèîýëåêòðîíèêà, ðåìîíò, Ðåìîíò è Ñåðâèñ, ðîáîòîòåõíèêà, Ñâÿçü, Ñåðèÿ Ðåìîíò, ñïðàâî÷íèê, ñõåìà, Ñõåìîòåõíèêà, Ñõåìû, Òåëåâèäåíèå, Òåëåâèçîðû, óñèëèòåëü, Ýëåêòðèê, Ýëåêòðîíèêà, Ýëåêòðîòåõíèêà

Ïîêàçàòü âñå òåãè
Àâòîðñêèå ïðàâà
Âñå êíèãè íà ñàéòå ïðåäñòàâëåíû èñêëþ÷èòåëüíî â îçíàêîìèòåëüíûõ öåëÿõ!
Àâòîðàì, æåëàþùèì âíåñòè ïîïðàâêè, ïðîñèì ñâÿçàòüñÿ ñ àäìèíèñòðàöèåé.

Àäìèíèñòðàöèÿ
Ãëàâíàÿ » Êíèãè » Òåîðèÿ » Electrical Circuit Theory and Technology. Fourth edition


Òåîðèÿ, Ýëåêòðîíèêà: Electrical Circuit Theory and Technology. Fourth edition

Electrical Circuit Theory and Technology. Fourth edition
Íàçâàíèå: Electrical Circuit Theory and Technology. Fourth edition
Àâòîð: John O. Bird
Èçäàòåëüñòâî: Newnes
Ãîä: 2010
Ñòðàíèö: 742
ßçûê: Àíãëèéñêèé

A fully comprehensive text for courses in electrical principles, circuit theory, and electrical technology, providing 800 worked examples and over 1000 further problems for students to work through at their own pace. This book is ideal for students studying engineering for the first time as part of BTEC National and other pre-degree vocational courses (especially where progression to higher levels of study is likely), as well as Higher Nationals, Foundation Degrees and first year undergraduate modules.
Now in its third edition, this best-selling textbook has been updated with developments in key areas such as semiconductors, transistors, and fuel cells, along with brand new material on ABCD parameters and Fourier's Analysis. Greater emphasis is placed on real-world situations in order to ensure the reader can relate the theory to actual engineering practice. In addition, the text has been restructured throughout so that 175 Exercises now appear at regular intervals, which the student can work through to test their learning of essential concepts and check their progress.

* New edition brought fully up to date with developments in key areas such as semiconductors, transistors, and fuel cells, containing brand new material on ABCD parameters and Fourier's Analysis.
* Real-world examples maximise relevance to actual engineering practice for the student reader
* Extensive Solutions Manual now available online (700 worked solutions)



Contents:

Preface

Part 1 Basic electrical engineering principles
    1 Units associated with basic electrical quantities
        1.1 SI units
        1.2 Charge
        1.3 Force
        1.4 Work
        1.5 Power
        1.6 Electrical potential and e.m.f.
        1.7 Resistance and conductance
        1.8 Electrical power and energy
        1.9 Summary of terms, units and their symbols
    2 An introduction to electric circuits
        2.1 Standard symbols for electrical components
        2.2 Electric current and quantity of electricity
        2.3 Potential difference and resistance
        2.4 Basic electrical measuring instruments
        2.5 Linear and non-linear devices
        2.6 Ohm's law
        2.7 Multiples and sub-multiples
        2.8 Conductors and insulators
        2.9 Electrical power and energy
        2.10 Main effects of electric current
        2.11 Fuses
        2.12 Insulation and the dangers of constant high current flow
    3 Resistance v ariation
        3.1 Resistor construction
        3.2 Resistance and resistivity
        3.3 Temperature coefficient of resistance
        3.4 Resistor colour coding and ohmic values
    4 Batteries and alternativ e sources of energy
        4.1 Introduction to batteries
        4.2 Some chemical effects of electricity
        4.3 The simple cell
        4.4 Corrosion
        4.5 E.m.f. and internal resistance of a cell
        4.6 Primary cells
        4.7 Secondary cells
        4.8 Cell capacity
        4.9 Safe disposal of batteries
        4.10 Fuel cells
        4.11 Alternative and renewable energy sources
    Revision Test 1
    5 Series and parallel networks
        5.1 Series circuits
        5.2 Potential divider
        5.3 Parallel networks
        5.4 Current division
        5.5 Loading effect
        5.6 Potentiometers and rheostats
        5.7 Relative and absolute voltages
        5.8 Earth potential and short circuits
        5.9 Wiring lamps in series and in parallel
    6 Capacitors and capacitance
        6.1 Introduction to capacitors
        6.2 Electrostatic field
        6.3 Electric field strength
        6.4 Capacitance
        6.5 Capacitors
        6.6 Electric flux density
        6.7 Permittivity
        6.8 The parallel plate capacitor
        6.9 Capacitors connected in parallel and series
        6.10 Dielectric strength
        6.11 Energy stored
        6.12 Practical types of capacitor
        6.13 Discharging capacitors
    7 Magnetic circuits
        7.1 Introduction to magnetism and magnetic circuits
        7.2 Magnetic fields
        7.3 Magnetic flux and flux density
        7.4 Magnetomotive force and magnetic field strength
        7.5 Permeability and B-H curves
        7.6 Reluctance
        7.7 Composite series magnetic circuits
        7.8 Comparison between electrical and magnetic quantities
        7.9 Hysteresis and hysteresis loss
    Revision Test 2
    8 Electromagnetism
        8.1 Magnetic field due to an electric current
        8.2 Electromagnets
        8.3 Force on a current-carrying conductor
        8.4 Principle of operation of a simple dc. motor
        8.5 Principle of operation of a moving coil-instrument
        8.6 Force on a charge
    9 Electromagnetic induction
        9.1 Introduction to electromagnetic induction
        9.2 Laws of electromagnetic induction
        9.3 Rotation of a loop in a magnetic field
        9.4 Inductance
        9.5 Inductors
        9.6 Energy stored
        9.7 Inductance of a coil
        9.8 Mutual inductance
    10 Electrical measuring instruments and measurements
        10.1 Introduction
        10.2 Analogue instruments
        10.3 Moving-iron instrument
        10.4 The moving-coil rectifier instrument
        10.5 Comparison of moving-coil, moving-iron and moving-coil rectifier instruments
        10.6 Shunts and multipliers
        10.7 Electronic instruments
        10.8 The ohm meter
        10.9 Multimeters
        10.10 Wattmeters
        10.11 Instrument'loading'effect
        10.12 The oscilloscope
        10.13 Virtual test and measuring instruments
        10.14 Virtual digital storage oscilloscopes
        10.15 Waveform harmonics
        10.16 Logarithmic ratios
        10.17 Null method of measurement
        10.18 Wheatstone bridge
        10.19 D.C. potentiometer
        10.20 A.C. bridges
        10.21 Measurementerrors
    11 Semiconductor diodes
        11.1 Types of material
        11.2 Semiconductor materials
        11.3 Conduction in semiconductor materials
        11.4 The p-n junction
        11.5 Forward and reverse bias
        11.6 Semiconductor diodes
        11.7 Characteristics and maximum ratings
        11.8 Rectification
        11.9 Zener diodes
        11.10 Silicon controlled rectifiers    
        11.11 Light emitting diodes    
        11.12 Varactor diodes    
        11.13 Schottky diodes    
    12 Transistors    
        12.1 Transistor classification
        12.2 Bipolar junction transistors (BJT)
        12.3 Transistor action
        12.4 Leakage current
        12.5 Bias and current flow
        12.6 Transistor operating configurations
        12.7 Bipolar transistor characteristics
        12.8 Transistor parameters
        12.9 Current gain
        12.10 Typical BJT characteristics and maximum ratings
        12.11 Field eftect transistors
        12.12 Field efiect transistor characteristics
        12.13 Typical FET characteristics and maximum ratings
        12.14 Transistor amplifiers
        12.15 Load lines
    Revision Test 3    
    Main formulae for Part 1
    
Part 2 Electrical principles and technology
    13 D.c. circuit theory
        13.1 Introduction
        13.2 Kirchhoff's laws
        13.3 The superposition theorem
        13.4 General d.c. circuit theory
        13.5 Theven in's theorem
        13.6 Constant-current source
        13.7 Norton's theorem
        13.8 Thevenin and Norton equivalent networks
        13.9 Maximum power transfer theorem
    14 Alternating voltages and currents
        14.1 Introduction
        14.2 The a.c. generator
        14.3 Waveforms
        14.4 A.c. values
        14.5 Electrical safety - insulation and fuses
        14.6 The equation of a sinusoidal waveform
        14.7 Combination of waveforms
        14.8 Rectification
        14.9 Smoothing of the rectified output waveform
    Revision Test 4
    15 Single-phase series a.c. circuits
        15.1 Purely resistive a.c. circuit
        15.2 Purely inductive a.c. circuit
        15.3 Purely capacitive a.c. circuit
        15.4 R-L series a.c. circuit
        15.5 R-C series a.c. circuit
        15.6 R-L-C series a.c. circuit
        15.7 Series resonance
        15.8 Q-factor
        15.9 Bandwidth and selectivity
        15.10 Power in a.c. circuits
        15.11 Power triangle and power factor
    16 Single-phase parallel a.c. circuits
        16.1 Introduction
        16.2 R-L parallel a.c. circuit
        16.3 R-C parallel a.c. circuit
        16.4 L-C parallel a.c. circuit
        16.5 LR-C parallel a.c. circuit
        16.6 Parallel resonance and Q-factor
        16.7 Power factor improvement
    17 D.c. transients
        17.1 Introduction
        17.2 Charging a capacitor
        17.3 Time constant for a C-R circuit
        17.4 Transient curves for a C-R circuit
        17.5 Discharging a capacitor
        17.6 Camera flash
        17.7 Current growth in an L-R circuit
        17.8 Time constant for an L-R circuit
        17.9 Transient curves for an L-R circuit
        17.10 Current decay in an L-R circuit
        17.11 Switching inductive circuits
        17.12 The effect of time constant on a rectangular waveform
    18 Operational amplifiers
        18.1 Introduction to operational amplifiers
        18.2 Some op amp parameters
        18.3 Op amp inverting amplifier
        18.4 Op amp non-inverting amplifier
        18.5 Op amp voltage-follower
        18.6 Op amp summing amplifier
        18.7 Op amp voltage comparator
        18.8 Op amp integrator
        18.9 Op amp differential amplifier
        18.10 Digital to analogue (D/A) conversion
        18.11 Analogue to digital (A/D) conversion
    Revision Test 5
    19 Three-phase systems
        19.1 Introduction
        19.2 Three-phase supply
        19.3 Star connection
        19.4 Delta connection
        19.5 Power in three-phase systems
        19.6 Measurement of power in three-phase systems
        19.7 Comparison of star and delta connections
        19.8 Advantages of three-phase systems
    20 Transformers
        20.1 Introduction
        20.2 Transformer principle of operation
        20.3 Transformer no-load phasor diagram
        20.4 E.m.f. equation of a transformer
        20.5 Transformer on-load phasor diagram
        20.6 Transformer construction
        20.7 Equivalent circuit of a transformer
        20.8 Regulation of a transformer
        20.9 Transformer losses and efficiency
        20.10 Resistance matching
        20.11 Auto transformers
        20.12 Isolating transformers
        20.13 Three-phase transformers
        20.14 Current transformers
        20.15 Voltage transformers
    Revision Test 6
    21 D.c. machines
        21.1 Introduction
        21.2 The action of a commutator
        21.3 D.c. machine construction
        21.4 Shunt, series and compound windings
        21.5 E.m.f. generated in an armature winding
        21.6 D.c. generators
        21.7 Types of d.c. generator and their characteristics
        21.8 D.c. machine losses
        21.9 Efficiency of a d.c. generator
        21.10 D.c. motors
        21.11 Torque of a d.c. machine
        21.12 Types of d.c. motor and their characteristics
        21.13 The efficiency of a d.c. motor
        21.14 D.c. motor starter
        21.15 Speed control of d.c. motors
        21.16 Motor cooling
    22 Three-phase induction motors
        22.1 Introduction
        22.2 Production of a rotating magnetic field
        22.3 Synchronous speed
        22.4 Construction of a three-phase induction motor
        22.5 Principle of operation of a three-phase induction motor
        22.6 Slip
        22.7 Rotor e.m.f. and frequency
        22.8 Rotor impedance and current
        22.9 Rotor copper loss
        22.10 Induction motor losses and efficiency
        22.11 Torque equation for an induction motor
        22.12 Induction motor torque-speed characteristics
        22.13 Starting methods for induction motors
        22.14 Advantages of squirrel-cage induction motors
        22.15 Advantages of wound rotor induction motor
        22.16 Double cage induction motor
        22.17 Uses of three-phase induction motors
    Revision Test 7
    Main formulae for Part 2
    
Part 3 Advanced circuit theory and technology
    23 Rev ision of complex numbers
        23.1 Introduction
        23.2 Operations involving Cartesian complex numbers
        23.3 Complex equations
        23.4 The polar form of a complex number
        23.5 Multiplication and division using complex numbers in polar form
        23.6 De Moivre's theorem — powers and roots of complex numbers
    24 Application of complex numbers to series a.c. circuits
        24.1 Introduction
        24.2 Series a.c. circuits
        24.3 Further worked problems on series a.c. circuits
    25 Application of complex numbers to parallel a.c. networks
        25.1 Introduction
        25.2 Admittance, conductance and susceptance
        25.3 Parallel a.c. networks
        25.4 Further worked problems on parallel a.c. networks
    26 Power in a.c. circuits
        26.1 Introduction
        26.2 Determination of power in a.c. circuits
        26.3 Power triangle and power factor
        26.4 Use of complex numbers for determination of power
        26.5 Power factor improvement
    Revision Test 8
    27 A.c. bridges
        27.1 Introduction
        27.2 Balance conditions for an a.c. bridge
        27.3 Types of a.c. bridge circuit
        27.4 Worked problems on a.c. bridges
    28 Series resonance and Q-factor
        28.1 Introduction
        28.2 Series resonance
        28.3 Q-factor
        28.4 Voltage magnification
        28.5 Q-factors in series
        28.6 Bandwidth
        28.7 Small deviations from the resonant frequency
    29 Parallel resonance and Q-factor
        29.1 Introduction
        29.2 The LR-C parallel network
        29.3 Dynamic resistance
        29.4 The LR-CR parallel network
        29.5 Q-factor in a parallel network
        29.6 Further worked problems on parallel resonance and Q-factor
    Revision Test 9
    30 Introduction to network analysis
        30.1 Introduction
        30.2 Solution of simultaneous equations using determinants
        30.3 Network analysis using Kirchhoff's laws
    31 Mesh-current and nodal analysis
        31.1 Mesh-current analysis
        31.2 Nodal analysis
    32 The superposition theorem
        32.1 Introduction
        32.2 Using the superposition theorem
        32.3 Further worked problems on the superposition theorem
    33 Thevenin's and Norton's theorems
        33.1 Introduction
        33.2 Thevenin's theorem
        33.3 Further worked problems on Thevenin's theorem
        33.4 Norton's theorem
        33.5 Thevenin and Norton equivalent networks
    Revision Test 10
    34 Delta-star and star-delta transformations
        34.1 Introduction
        34.2 Delta and star connections
        34.3 Delta-star transformation
        34.4 Star-delta transformation
    35 Maximum power transfer theorems and impedance matching
        35.1 Maximum power transfer theorems
        35.2 Impedance matching
    Revision Test 11
    36 Complex waveforms
        36.1 Introduction
        36.2 The general equation for a complex waveform
        36.3 Harmonic synthesis
        36.4 Fourier series of periodic and non-periodic fiinctions
        36.5 Even and odd functions and Fourier series over any range
        36.6 Rms value, mean value and the form iactor of a complex wave
        36.7 Power associated with complex waves
        36.8 Harmonics in single-phase circuits
        36.9 Further worked problems on harmonics in single-phase circuits
        36.10 Resonance due to harmonics
        36.11 Sources of harmonics
    37 A numerical method of harmonic analysis
        37.1 Introduction
        37.2 Harmonic analysis on data given in tabular or graphical form
        37.3 Complex waveform considerations
    38 Magnetic materials
        38.1 Revision of terms and units used with magnetic circuits
        38.2 Magnetic properties of materials
        38.3 Hysteresis and hysteresis loss
        38.4 Eddy current loss
        38.5 Separation of hysteresis and eddy current losses
        38.6 Non-permanent magnetic materials
        38.7 Permanent magnetic materials
    Revision Test 12
    39 Dielectrics and dielectric loss
        39.1 Electric fields, capacitance and permittivity
        39.2 Polarization
        39.3 Dielectric strength
        39.4 Thermal effects
        39.5 Mechanical properties
        39.6 Types of practical capacitor
        39.7 Liquid dielectrics and gas insulation
        39.8 Dielectric loss and loss angle
    40 Field theory
        40.1 Field plotting by curvilinear squares
        40.2 Capacitance between concentric cylinders
        40.3 Capacitance of an isolated twin line
        40.4 Energy stored in an electric field
        40.5 Induced e.m.f. and inductance
        40.6 Inductance of a concentric cylinder (or coaxial cable)
        40.7 Inductance of an isolated twin line
        40.8 Energy stored in an electromagnetic field
    41 Attenuators
        41.1 Introduction
        41.2 Characteristic impedance
        41.3 Logarithmic ratios
        41.4 Symmetrical T- and n-attenuators
        41.5 Insertion loss
        41.6 Asymmetrical T- and n -sections
        41.7 The L-section attenuator
        41.8 Two-port networks in cascade
        41.9 ABCD parameters
        41.10 ABCD parameters for networks
        41.11 Characteristic impedance in terms of ABCD parameters
    Revision Test 13
    42 Filter networks
        42.1 Introduction
        42.2 Basic types of filter sections
        42.3 The characteristic impedance and the attenuation of filter sections
        42.4 Ladder networks
        42.5 Low-pass filter sections
        42.6 High-pass filter sections
        42.7 Propagation coefficient and time delay in filter sections
        42.8 'm-derived' filter sections
        42.9 Practical composite filters
    43 Magnetically coupled circuits
        43.1 Introduction
        43.2 Self-inductance
        43.3 Mutual inductance
        43.4 Coupling coefficient
        43.5 Coils connected in series
        43.6 Coupled circuits
        43.7 Dot rule for coupled circuits
    44 Transmission lines
        44.1 Introduction
        44.2 Transmission line primary constants
        44.3 Phase delay, wavelength and velocity of propagation
        44.4 Current and voltage relationships
        44.5 Characteristic impedance and propagation coefficient in terms of the primary constants
        44.6 Distortion on transmission lines
        44.7 Wave reflection and the reflection coefficient
        44.8 Standing waves and the standing wave ratio
    45 Transients and Laplace transforms
        45.1 Introduction
        45.2 Response of R-C series circuit to a step input
        45.3 Response of R-L series circuit to a step input
        45.4 L-R-C series circuit response
        45.5 Introduction to Laplace transforms
        45.6 Inverse Laplace transforms and the solution of differential equations
        45.7 Laplace transform analysis directly from the circuit diagram
        45.8 L-R-C series circuit using Laplace transforms
        45.9 Initial conditions
    Revision Test 14
    Main formulae for Part 3: Adv anced circuit theory and technology

Part 4 General reference
    Standard electrical quantities — their symbols and units
    Greek alphabet
    Common prefixes
    Resistor colour coding and ohmic values
    Index

Ñîäåðæàíèå Îãëàâëåíèå







The Art of Digital Audio. Third Edition Ñëåäóþùèé ïîñò >>Èñêóññòâî ñîçäàíèÿ àêóñòèêè ñ ìàêñèìàëüíî æèâûì çâóêîì â òðàêòå àóäèî-âèäåî ...
 
Äðóãèå íîâîñòè ïî òåìå:
Èíôîðìàöèÿ
Ïîñåòèòåëè, íàõîäÿùèåñÿ â ãðóïïå Ãîñòè, íå ìîãóò îñòàâëÿòü êîììåíòàðèè ê äàííîé ïóáëèêàöèè.

Translate
Êàëåíäàðü
«    Îêòÿáðü 2020    »
Ïí Âò Ñð ×ò Ïò Ñá Âñ
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
 

Àðõèâ íîâîñòåé
Îêòÿáðü 2020 (4)
Ñåíòÿáðü 2020 (22)
Àâãóñò 2020 (27)
Èþëü 2020 (18)
Èþíü 2020 (44)
Ìàé 2020 (60)

Copyright © 2009-2023. RadioSovet.Ru. Ìàðêåòèíã è SEO-ðåêëàìà o-es.ru.