|
Облако тегов |
|
|
Circuit Cellar, Elektor, Everyday Practical Electronics, Nuts and Volts, антенна, Антенны, аудио, видео, Журнал, Измерения, источники питания, Микросхемы, приборы, Радіоаматор, Радио, Радио (жур.), Радиоаматор, Радиоконструктор, Радиолюбитель, радиолюбителю, Радиолюбителям, Радиомир, радиоприемник, радиосвязь, радиоэлектроника, ремонт, Ремонт и Сервис, Связь, Серия Ремонт, справочник, схема, Схемотехника, Схемы, Телевидение, Телевизоры, трансформаторы, усилитель, Электрик, Электроника, Электротехника
Показать все теги
|
|
|
|
|
|
Авторские права | |
|
Все книги на сайте представлены исключительно в ознакомительных целях!
Авторам, желающим внести поправки, просим связаться с администрацией.
Администрация
|
|
|
|
|
|
|
|
Книги » Электроника: Operational Amplifiers: Theory and Design
|
|
|
Просмотров: 963 добавил: MIHAIL62 28-08-2014, 16:21
|
|
Название: Operational Amplifiers: Theory and Design
Автор: Johan Huijsing
Издательство: Springer
Год: 2011
Страниц: 430
Язык: Английский
|
Operational Amplifiers – Theory and Design, Second Edition presents a systematic circuit design of operational amplifiers. Containing state-of-the-art material as well as the essentials, the book is written to appeal to both the circuit designer and the system designer. It is shown that the topology of all operational amplifiers can be divided into nine main overall configurations. These configurations range from one gain stage up to four or more stages. Many famous designs are evaluated in depth.Additional chapters included are on systematic design of µV-offset operational amplifiers and precision instrumentation amplifiers by applying chopping, auto-zeroing, and dynamic element-matching techniques. Also, techniques for frequency compensation of amplifiers with high capacitive loads have been added.
Operational Amplifiers – Theory and Design, Second Edition presents high-frequency compensation techniques to HF-stabilize all nine configurations. Special emphasis is placed on low-power low-voltage architectures with rail-to-rail input and output ranges. In addition to presenting characterization of operational amplifiers by macro models and error matrices, together with measurement techniques for their parameters it also develops the design of fully differential operational amplifiers and operational floating amplifiers. Operational Amplifiers – Theory and Design, Second Edition is carefully structured and enriched by numerous figures, problems and simulation exercises and is ideal for the purpose of self-study and self-evaluation.
Содержание
Cover......Page 1
Operational Amplifiers, 2nd Edition......Page 4
Acknowledgements......Page 8
Contents......Page 10
Summary......Page 20
Introduction......Page 22
Notation......Page 24
Nullor Concept......Page 28
1.1 Operational Inverting Amplifier......Page 29
Non-Inverting Voltage Amplifier......Page 30
Voltage Follower......Page 31
Current Amplifier......Page 32
Current Follower......Page 33
Voltage and Current Follower......Page 34
1.5 Conclusion......Page 35
1.6 References......Page 37
Definition of: Offset Voltage and Current, Input and Output Impedance, Transconductance......Page 38
2.2 Operational Voltage Amplifier......Page 39
Definition of: Input Bias Current, Input Common-Mode Rejection Ratio......Page 40
Definition of: Output Bias Current, Output Common-Mode Current Rejection Ratio......Page 41
2.4 Operational Floating Amplifier......Page 42
Macromodel Mathematical......Page 43
Macromodel Miller-Compensated......Page 44
Conclusion......Page 45
2.6 Measurement Techniques for Operational Amplifiers......Page 46
Transconductance Measurement of an OTA......Page 47
Voltage Gain Measurement of an OpAmp......Page 48
General Measurement Setup for an OpAmp......Page 49
Problem 2.1......Page 51
Solution......Page 52
Simulation Exercise 2.1......Page 54
2.8 References......Page 55
3.1 Operational Inverting Amplifier......Page 58
Current-to-Voltage Converter......Page 59
Inverting Voltage Amplifier......Page 60
Non-Inverting Voltage Amplifier......Page 61
Bridge Instrumentation Amplifier......Page 62
Current Amplifier......Page 64
Voltage-to-Current Converter......Page 65
Inverting Current Amplifier......Page 66
Differential Voltage-to-Current Converter......Page 67
Instrumentation Current Amplifier......Page 69
Gyrator Floating......Page 70
3.5 Dynamic Range......Page 71
Dynamic Range Over Supply-Power Ratio......Page 72
Voltage-to-Current Converter......Page 73
Non-Inverting Voltage Amplifier......Page 74
Inverting Voltage Integrator......Page 75
Current Mirror......Page 76
Non-Ideal Operational Amplifiers......Page 77
Problem 3.1......Page 79
Solution......Page 80
Solution......Page 81
Solution......Page 82
3.7 References......Page 83
4.1 Offset, Bias, and Drift......Page 86
Balancing Techniques......Page 87
Offset Trimming......Page 92
Biasing for Constant Transconductance Gm Over Temperature......Page 94
Isolation Techniques......Page 97
Balancing Techniques......Page 99
4.3 Common-Mode Rejection......Page 100
Balancing Techniques......Page 101
Combination of Isolation and Balancing......Page 102
Parallel Input Impedance......Page 103
Tail Impedance......Page 105
Back-Gate Influence......Page 106
Total CMCR......Page 107
Conclusion......Page 108
4.4 Rail-to-Rail Input Stages......Page 109
Constant gm by Constant Sum of Tail-Currents......Page 111
Constant gm by Current Spillover Control......Page 114
Constant gm in CMOS by Saturation Control......Page 118
Constant gm in Strong-Inversion CMOS by Constant Sum of VGS......Page 120
Extension of the Common-Mode Input Range......Page 122
Problem 4.1......Page 123
Solution......Page 124
Solution......Page 125
Problem 4.3......Page 126
Simulation Exercise 4.1......Page 127
Simulation Exercise 4.3......Page 129
4.6 References......Page 131
5.1 Power Efficiency of Output Stages......Page 132
5.2 Classification of Output Stages......Page 137
FFB Voltage Follower Output Stages......Page 139
FFB Compound Output Stages......Page 144
FFB Rail-to-Rail General-Amplifier Output Stages......Page 146
5.4 Feedback Class-AB Biasing (FBB)......Page 155
FBB Voltage-Follower Output Stages......Page 156
FBB Compound Output Stages......Page 157
FBB Rail-to-Rail General Amplifier Output Stages......Page 162
Conclusion......Page 167
Output Saturation Protection Circuits......Page 168
Output Current Limitation Circuits......Page 170
Problem 5.1......Page 172
Problem 5.2......Page 173
Solution......Page 174
Solution......Page 175
Solution......Page 176
Solution......Page 177
Simulation Exercise 5.1......Page 178
Simulation Exercise 5.2......Page 179
5.7 References......Page 180
6.1 Classification of Overall Topologies......Page 182
Nine Overall Topologies......Page 183
Input Voltage and Current Compensation......Page 187
6.2 Frequency Compensation......Page 189
One-GA-Stage Frequency Compensation......Page 190
No Internal Poles Without Cascodes!......Page 192
Two-GA-Stage Frequency Compensation......Page 193
Two-GA-Stage Parallel Compensation (PC)......Page 194
Two-GA-Stage Miller Compensation (MC)......Page 197
Remark on the Order of Pole Positions......Page 199
Three-GA-Stage Frequency Compensation......Page 204
Three-GA-Stage Nested Miller Compensation (NMC)......Page 205
Three-GA-Stage Multipath Nested Miller Compensation (MNMC)......Page 208
Four-GA-Stage Hybrid Nested Miller Compensation (HNMC)......Page 211
Four-GA-Stage Multipath Hybrid Nested Miller Compensation (MHNMC)......Page 214
Compensation for Low Power and High Capacitive Load......Page 216
RC or Distributed RC Compensation Network......Page 217
Damping Compensation Network......Page 219
Quenching Capacitor Network......Page 220
Reversed Nested Miller Compensation (RNMC) for Low Power and High Capacitive Load......Page 222
Conclusion......Page 223
6.3 Slew Rate......Page 225
6.4 Non-Linear Distortion......Page 227
Solution......Page 232
Problem 6.2......Page 233
Solution......Page 234
Solution......Page 235
Solution......Page 236
Simulation Exercise 6.1......Page 237
6.6 References......Page 238
Operational Transconductance Amplifier......Page 240
Folded-Cascode Operational Amplifier......Page 242
Telescopic-Cascode Operational Amplifier......Page 246
Feedforward HF Compensation......Page 247
Input Voltage Compensation......Page 248
Input Class-AB Boosting......Page 249
Voltage-Gain Boosting......Page 251
Conclusion......Page 252
Basic Bipolar R-R-Out Class-A Operational Amplifier......Page 253
Improved Basic Bipolar R-R-Out Class-A Operational Amplifier......Page 254
Improved Basic CMOS R-R-Out Class-A Operational Amplifier......Page 256
High-Speed Bipolar Class-AB Operational Amplifier......Page 258
High-Slew-Rate Bipolar Class-AB Voltage-Follower Buffer......Page 261
General Bipolar Class-AB Operational Amplifier with Miller Compensation......Page 262
muA741 Operational Amplifier with Miller Compensation......Page 264
High-Frequency All-NPN Operational Amplifier with Mixed PC and MC......Page 266
Conclusion......Page 268
LM101 Class-AB All-NPN Operational Amplifier with MC......Page 269
NE5534 Class-AB Operational Amplifier with Bypassed NMC......Page 271
Precision All-NPN Class-AB Operational Amplifier with NMC......Page 272
Precision HF All-NPN Class-AB Operational Amplifier with MNMC......Page 273
2 V Power-Efficient All-NPN Class-AB Operational Amplifier with MDNMC......Page 276
7.7 GA-CF-GA Configuration......Page 278
Compact 1.2 V R-R-Out CMOS Class-A OpAmp with MC......Page 279
Compact 2 V R-R-Out CMOS Class-AB OpAmp with MC......Page 281
Compact 2 V R-R-In/Out CMOS Class-AB OpAmp with MC......Page 283
Compact 1.2 V R-R-Out CMOS Class-AB OpAmp with MC......Page 287
1 V R-R-Out CMOS Class-AB OpAmp with MNMC......Page 288
Compact 1.2 V R-R-Out BiCMOS Class-AB OpAmp with MNMC......Page 292
1.8 V R-R-In/Out Bipolar Class-AB OpAmp (NE5234) with NMC......Page 294
1 V R-R-In/Out Bipolar Class-AB OpAmp with MNMC......Page 298
1.2 V R-R-Out CMOS Class-AB OpAmp with MHNMC......Page 303
Conclusion......Page 307
Solution......Page 308
Solution......Page 310
Solution......Page 311
Solution......Page 312
Simulation Exercise 7.1......Page 314
7.11 References......Page 315
8.1 Fully Differential GA-CF Configuration......Page 318
Fully Differential CMOS OpAmp with Linear-Mode CM-Out Control......Page 319
Fully Differential Telescopic CMOS OpAmp with Linear-Mode CM-Out Control......Page 320
Fully Differential CMOS OpAmp with LTP CM-Out Control......Page 321
Fully Differential GA-CF CMOS OpAmp with Output Voltage Gain Boosters......Page 322
Fully Differential GA-CF CMOS OpAmp with Input-CM Feedback CM-Out Control......Page 323
Fully Differential CMOS OpAmp with R-R Buffered Resistive CM-Out Control......Page 324
Fully Differential CMOS OpAmp with R-R Resistive CM-Out Control......Page 326
Conclusion......Page 328
Fully Differential CMOS OpAmp with Switched-Capacitor CM-Out Control......Page 329
Problem 8.1......Page 330
Solution......Page 331
Solution......Page 332
Simulation Exercise 8.1......Page 333
8.5 References......Page 334
9.1 Introduction......Page 336
9.2 Unipolar Voltage-to-Current Converter......Page 338
Unipolar Single-Transistor V-I Converter......Page 339
Unipolar CMOS Accurate V-I Converter......Page 340
Unipolar Bipolar Accurate V-I Converter......Page 341
Unipolar OpAmp Accurate V-I Converter......Page 342
Differential Simple V-I Converter......Page 343
Differential Accurate V-I Converter......Page 344
Differential CMOS Accurate V-I Converter......Page 345
Instrumentation Amplifier (Semi) with Three OpAmps......Page 346
Instrumentation Amplifier with a Differential V-I Converter for Input Sensing......Page 347
Instrumentation Amplifier with Differential V-I Converters for Input and Output Sensing......Page 349
Instrumentation Amplifier with Simple Differential V-I Converters for Input and Output Sensing......Page 350
Instrumentation Amplifier Bipolar with Common-Mode Voltage Range Including Negative Rail Voltage......Page 351
Instrumentation Amplifier CMOS with Common-Mode Voltage Range Including Negative Rail Voltage......Page 352
Instrumentation Amplifier Simplified Diagram and General Symbol......Page 353
Conclusion......Page 354
Universal V-I Converter Design with Semi-instrumentation Amplifier......Page 355
Universal V-I Converter Design with Real Instrumentation Amplifier......Page 356
Universal Class-A OFA Design with Floating Zener-Diode Supply......Page 358
Universal Class-A OFA Design with Supply Current Followers......Page 359
Universal Class-A OFA Design with Long-Tailed-Pairs......Page 360
9.7 Universal Class-AB OFA Realization with Power-Supply Isolation......Page 364
9.8 Universal Class-AB OFA Design......Page 365
Universal Class-AB OFA Design with Total-Output-Supply-Current Equalization......Page 366
Universal Class-AB OFA Design with Current Mirrors......Page 368
Universal Class-AB OFA Design with Output-Current Equalization......Page 370
Universal Class-AB Voltage-to-Current Converter with Instrumentation Amplifier......Page 371
Solution......Page 372
Problem 9.2......Page 374
Problem 9.3......Page 375
9.10 References......Page 376
10.1 Introduction......Page 378
10.2 Applications of Instrumentation Amplifiers......Page 379
10.3 Three-OpAmp Instrumentation Amplifiers......Page 381
10.4 Current-Feedback Instrumentation Amplifiers......Page 382
10.5 Auto-Zero OpAmps and InstAmps......Page 385
10.6 Chopper OpAmps and InstAmps......Page 388
10.7 Chopper-Stabilized OpAmps and InstAmps......Page 393
10.8 Chopper-Stabilized and AZ Chopper OpAmps and InstAmps......Page 399
10.9 Chopper Amplifiers with Ripple-Reduction Loop......Page 403
10.10 Chopper Amplifiers with Capacitive-Coupled Input......Page 409
10.11 Gain Accuracy of Instrumentation Amplifiers......Page 416
10.12 Summary Low Offset......Page 423
10.13 References......Page 424
Biography......Page 426
Index......Page 428
Ключевые теги: Operational, Amplifiers
|
|
Содержание Оглавление
|
|
|
|
|
Другие новости по теме:
|
|
|
|
|
|
|
|
|
Информация |
|
|
|
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации. |
|
|
|
|
|
|
|